Harold S. Henry October 13, 2013

Really, Really Going Native

We've been hearing how small ubiquitous devices and vast web sites have reminded
everyone that efficiency and performance really are important in code. All | can say is, yes.
And we've also have been hearing that as a result, C++ is coming back! Um, why?

The conventional wisdom ten years ago was that size and speed didn't matter much, since
desktop hardware was so big, fast and underutilized. Instead, time to market,
maintainability, integration, quality assurance— those were the things to worry about.
Code bloat? Inefficient use of hardware resources? Not important.

As someone who did a fair amount of assembly-language programming on really small
embedded systems in the 1980s, | could never quite swallow that argument. And because
of the time | spent writing assembly-language, | deeply appreciate the C language.

C, not C++.

When | want the benefits of object-oriented development, including rich, powerful, well-
architected libraries and all the convenient short-hands provided by templates, classes,
overloading and inheritance, | use Python or C#. They are truly awesome, powerful, and
fast! They produce very compact, portable programs (Python is especially portable, to all
those outlying systems Microsoft has no time for...). They save you the trouble of
managing memory. They make a lot of hard stuff magnificently easy. And if you don't like
them, there are so many others to choose from, like Java, JavaScript, Ruby, Eiffel, and so
on and so Forth.

But if I'm trying to write the fastest, tightest code possible, for a driver or server
application or library, | believe that C is still the right language: C, not C++. Why?

The thing about C is that it was designed specifically to balance the need for portability
against the need in system programming to be able to understand exactly what your code
is doing at a hardware level. It was and remains a brilliant abstraction of processor
instructions. All those nasty preprocessor directives are an incredibly effective means of
setting different contexts so the same code can run on diverse systems. The language
itself is pleasantly terse (minimal typing), which is less important these days when our IDEs
support code completion, but I'll tell you, it used to matter a lot, and it's elegant! My main
point, though, is that C hits the perfect level of abstraction for system code. It's high
enough level that you can read a lot of it fast, and it's low enough level that you can find
out exactly what is happening at every step.

Page 1

Really, Really Going Native Page 2

Why should you know what's happening at every step? Isn't encapsulation a beautiful
thing? Not for system code. If you can afford not to care what your components are
doing, use a really powerful scripting language. That's often a good choice for mobile
devices, too, because byte-code is a lot more compact than native code and is easily
portable.

Now, the C++ aficionados will say, perhaps rightly, that for very large projects with
multiple teams, C++ can facilitate inter-team communication. It's more type-safe. You
can spell out your contracts more clearly using classes and interfaces.

Well, you can do the same things in C, of course, just by taking care. Most of the shortcuts
and short-hands of C++ are just that, and the simplicity of C makes you express your APIs
in a very concrete way. C forces you to expose what you're doing, where one of the
objectives of a lot of C++ code is to obscure (encapsulate) it. And look, if you're thinking
about performance, you have to focus on two things:

O Am I doing things the most effective way (am I using the right algorithms)?

O Am I doing things as efficiently as possible (am I avoiding unnecessary steps in my
implementation)?

The short-hands and shortcuts of C++ generally make both these factors harder to
evaluate.

Also, transparency is particularly valuable in the open-source context, as opposed to the
standard corporate model where source-code is kept secret. Even on very large system
projects, | believe that the simple clarity of C code makes it the best choice. For instance,
say what you will about Linus Torvald's personality, he's a good architect, and Linux
remains clean and well factored. It would not be any easier to understand if it were
written in C++, and it would likely be much messier under the hood.

Incidentally, | adore Linus' famous rant on this subject in 2007. What a jerk, but he's so
right! And he is not alone in having problems with C++. Among its detractors are the
likes of Niklaus Wirth ("C++ is an insult to the human brain"), Alan Kay ("l invented the
term Object-Oriented, and | can tell you | did not have C++ in mind"), Bertrand Meyer
("There are only two things wrong with C++: the initial concept and the implementation,”
or "C++ is the only current language making COBOL look good"), and even Donald Knuth
("Whenever the C++ language designers had two competing ideas as to how they should
solve some problem, they said, 'OK, we'll do them both'. So the language is too baroque
for my taste").

Now, | know C++ programmers will passionately disagree. Bjarne is every bit as arrogant
as Linus, and Microsoft is busy drumming up business for a "'modern” C++. I'm just
speaking my own experience: object-orientation is good when | don't have to care about
what's happening at the machine level. If | have to care, C is the language | choose. Still.

