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The infinite antinomy 
 

Common types of number 

There are seven common types of number that most of us learn about in school: 

1. Natural numbers:     The natural numbers are the counting numbers (0, 1, 2, 3, 4, 5, …). They 

answer questions like “how many fingers am I holding up?” In 1889, the distinguished Italian 

mathematician, Giuseppe Peano, published a formal definition of the natural numbers that is 

widely accepted today. Basically they are defined as a sequence, starting at zero, that is 

generated by adding 1 to the previous number in the sequence. 

2. Integers:     The integers include the natural numbers together with the sequence of numbers, 

starting at zero, in which each number is 1 less than the one before. 

3. Rational numbers:     The rational numbers include the natural numbers and integers, with 

the addition of the fractions that result from dividing one integer by another. It may be worth 

noting that dividing any rational number by another always amounts to dividing one integer by 

another. For example: 

1
2

7
÷ 2

5

6
=

54

119
 

Expressing fractions in base-10 decimal expansion often results in a never-ending sequence of 

digits. For example, 1/3 = 0.33333333333… (the digit 3 keeps repeating indefinitely). However, a 

decimal fraction expansion of a rational number always contains some sequence of digits that 

repeats regularly, which distinguishes it from an irrational number (the same is also true if you 

use any other base than 10). 

4. Irrational numbers:     An irrational number is a non-integer whose fractional expression 

requires a never-ending sequence of digits that contains no repeating pattern.  

5. Real numbers:     The real numbers are the rational and irrational numbers together. Real 

numbers that can’t be defined algebraically are known as transcendental numbers. 

6. Imaginary numbers:     An imaginary number is a real number multiplied by the imaginary 

unit i, which is equal to the square root of -1. 

7. Complex numbers:     A complex number is a real number added to an imaginary number. 
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All the natural numbers 

Take the natural numbers— all of them. They're clearly defined (each being one larger than the 

one before), so let's collect them in a complete set that includes them all. 

That sounds reasonable, except how do you get them all? The natural numbers go on 

indefinitely, without an upper bound. There can’t be a largest natural number, because if there 

were one, you could create a bigger one by adding 1 to it. They are countless, because the 

largest one, if it existed, would be their count. So, when you think about it, we don't know, and 

indeed can't know, how to take all of them. No matter how many you take, there's still more. We 

haven't taken all of them until we get to the end, and they're endless.  

The solution is to assign them an upper bound, namely infinity (∞), much in the same way we 

assign the imaginary unit i to be the number that when multiplied by itself equals -1. However, 

let's be clear: infinity is not itself a number; it's a contradiction in terms. It's the end of a sequence 

that has no end, the stopping point of a process that has no stopping point. It attempts to 

encompass the entirety of something that cannot be encompassed. 

Nonetheless, the concept of infinity is useful in practice for completing all kinds of asymptotic 

convergences. When you can show that the more you repeat a process, the closer you get to a 

result without actually reaching it, you can reach that result by invoking infinity. Infinity allows 

you to complete what can’t be completed in any finite number of steps.  

We use infinity this way all the time. In the rational numbers, for instance, we commonly equate 

a precise fractional value to an endless repeating sequence of decimal digits. For example, we 

accept that 0.33333... converges on and ultimately equals 1/3, or that 0.99999... converges 

on and ultimately equals 1. We’re invoking infinity in very much the same way when we say, “the 

set of all natural numbers.” 

Although you could define the natural numbers declaratively, as an infinite sequence starting at 

zero, every element of which is one greater than the preceding one, you'd still be including the 

concept of infinity in the definition ("infinite sequence"). To keep infinity separate, Peano defined 

the natural numbers imperatively, as generated by a process that is repeated over and over. This 

seems to avoid the unknowable somewhat better, unless you want to generate all the natural 

numbers. 

Think what it would take to compute a large number of them. Even if you set things up so that 

you could add one to the preceding number in a trillionth of a second, you'd still use up all the 

time in the universe before you reached infinity. And, long before that, you would have reached 

such an unimaginably vast number that all the data centers currently in existence wouldn't have 

the capacity to store it. 

Generating an infinite sequence is simply impossible in practice. 

It's important to repeat this: infinity can't be reached. It's fundamentally unknowable, and 

intrinsically contradictory. There's no reasonable way to think about it. If you want to add two 

infinities together, do you start the second one at the end of the first? 
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So let’s get real 

Georg Cantor, father of set theory, tried to keep infinity's ghastly inconsistency under control. It 

was important, logically, to be able to take the infinite set of all natural numbers without 

including infinity. Rather than getting stuck trying to reach the end of an endless process, he 

worked with the idea of combining two endless processes into a single process that merges 

them. For example, he noted that there are ways to put every possible rational fraction in a one-

to-one correspondence with every possible natural number. An example of such a mapping 

begins: 

0/0  0/1  0/2  0/3  0/4 
 
1/0  1/1  1/2  1/3 
 
2/0  2/1  2/2 
 
3/0  3/1 
 
4/0 

The first 12 correspondences in this sequence are as follows: 

0    0/0                       8    1/2 
1    1/0                       9    0/3 
2    0/1                      10    0/4 
3    0/2                      11    1/3 
4    1/1                      12    2/2 
5    2/0                      11    3/1 
6    3/0                       12    4/0 
7    2/1                       and so on... 

Interestingly, fractions like 1/0, 2/0, and 3/0 are not generally included in the rational numbers 

because they are infinite (any fraction that has a non-zero numerator approaches infinity as the 

denominator approaches zero). We generally sidestep infinity in that case by saying more 

politely that the result of dividing anything by zero is indeterminate. 

Because you can “count” the number of rational numbers in ways such as the one illustrated 

above, Cantor believed that the infinity of rational numbers is the same “size” as the infinity of 

natural numbers. This logic is almost universally accepted today. A contrary school-child might 

disagree, because the natural numbers in the mapping above increase much, much faster than 

the numerators and denominators of the fractions they’re counting, suggesting that there are 

more rational numbers than natural numbers. Of course, that’s only true until you get to the end 

of the process, which by definition you can’t. 

Taking this kind of countability as an indicator of infinite equivalence, Cantor used his famous 

“diagonal argument” to prove that you can’t count real numbers the same way. From this he 

concluded that the infinity of real numbers is larger than the infinity of natural numbers. 
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Cantor's diagonal argument 

The diagonal argument goes as follows: With the real numbers between zero and one expressed 

as binary (base-2) fractional expansions, suppose you set up a one-to-one correspondence of 

any kind between them and the natural numbers. Your list of real numbers would look 

something like this: 

Naturals      Real numbers  

   0    0.010101010101... 
   1    0.011010101010... 
   2    0.110011001100... 
   3    0.001001001001... 
   4    0.000111000111... 
   5    0.101101011010... 

  ...       . . . . . . 

The diagonal argument points out that no matter how you've made your list of real numbers, 

you can always find a real number that’s not on it by taking the ith digit of the ith number in 

the list for all i and then changing 0s to 1 and 1s to 0 in the number that that diagonal 

sequence specifies. That resulting number then differs from every single number on your list by 

at least one digit. 

This is obviously true for any finite list, but is it also true for an infinite list? Do we know what 

happens when the list keeps going indefinitely? You can observe in a finite list of this sort that 

the farther you go down it, the better finite approximations of your “new” diagonal number you 

come to, although you can never reach that new number at any finite stopping point because 

you’re always creating a new and different number there. But what does that actually mean? 

For Cantor, it meant that the infinity of real numbers is larger than the infinity of integers. This 

reasoning is built into the foundation of modern mathematics and mathematical logic. More 

generally, Cantor extended the idea to the set of subsets of any infinite set. Finite sets of size n 

have 2n subsets, and presumably infinite sets have 2∞ subsets too. Cantor argued that the 

infinity that measures the size of the set of subsets of any infinite set is a larger infinity than the 

one that measures the size of the set itself, and this conclusion let him posit the existence of an 

infinite hierarchy of so-called transfinite numbers. 

One outcome of this set-theoretic argumentation is to let you take the set of all natural numbers 

without including infinity in it. I assert, however, that the inconsistency inherent in the concept 

of infinity actually makes this impossible. In the same way we agree that the infinite sequence 

0.99999… is equal to 1, we should be able to agree that an infinite set of distinct numbers must 

contain at least one infinite number (and if it contains one, it must contain an infinite number of 

them). 
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But how about that diagonal argument? Let’s consider a simple and obvious mapping of natural 

numbers to real numbers in the unit interval [0,1). This is the part of the real number line that 

starts at 0 and goes up to, but does not include, 1. 

To create the mapping, take the binary digits that express each natural number and reverse 

them on the other side of the decimal point to express real binary fractions in that interval, as 

follows: 

Base10  B inary  Rea l  f rac t ions  

   0   =         0    0.000000000000... 
   1   =         1    0.100000000000... 
   2   =        10    0.010000000000... 
   3   =        11    0.110000000000... 
   4   =       100    0.001000000000... 
   5   =       101    0.101000000000... 
   6   =       110    0.011000000000... 
   7   =       111    0.111000000000... 
   8   =      1000    0.000100000000... 
   9   =      1001    0.100100000000... 
  10   =      1010    0.010100000000... 
  11   =      1011    0.110100000000... 
 ...           ...        . . . 

   ∞   = ...111111    0.111111111111... = 1 

If you continue this mapping infinitely, the number that the diagonal argument says won’t be on 

your list after you change all those 0s to 1s is 0.11111111.... 

Is that number on your list? Well, it starts out as a legitimate fraction less than one, but it 

converges on 1, which we’ve explicitly excluded from the interval.  

If you “complete” the mapping above, you reach both the infinite sequence of digits that isn’t 

supposed to be on your list and also the limiting number that isn’t supposed to be in your 

interval. Plus, of course, you’ve also created every possible infinite sequence of binary digits along 

the way. 

This suggests two conclusions that Cantor’s logic (and mathematical logic today) manages to 

avoid: 

1. The finite concept of an open interval doesn’t properly apply to the real number line. 

You can’t take a complete bounded interval of real numbers without including its 

bounding points just as you can’t take the set of all natural numbers without including 

infinity.  

2. Trying to distinguish different sizes of infinity doesn’t work: Infinity can't be confined like 

that. The infinite sequence of natural numbers is capable of containing or encompassing 

any conceivable number including infinite numbers of infinite infinities raised to the 

powers of an infinite tower of infinities. We have to stop trying to make sense of that. 
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The effort to treat an infinite set like a finite one and get around infinity's contradictory nature 

has created problems in set-theoretic logic for a long time. Bertrand Russell and Alfred North 

Whitehead made a heroic effort early in the twentieth century to build a comprehensive logical 

foundation for mathematics based on set theory, but they gave up. Their efforts foundered on a 

set-theoretic antinomy, a paradox like Epimenides’ this statement is false (if it’s true, it’s false, but 

if it’s false, it’s true).  

Russell illustrated his set-theoretic antinomy like this: If there’s a set of all people who don’t 

shave themselves, and there’s a barber who shaves everyone in that set but no one else, is the 

barber in that set? If he is, he isn’t, but if he isn’t, he is. Gödel’s incompleteness theorems and 

Turing’s computability extension of them are related to this kind of underlying set-theoretic 

antinomy. 

I’d like to suggest that infinity is Russell’s barber. 

Irreal numbers 

If you set aside Cantor’s transfinite numbers, it’s interesting to consider the infinite set of infinite 

natural numbers that are expressed by different infinite sequences of digits. 

I propose calling these numbers the irreals. 

Thinking about them, you can see why Cantor might have wanted to exclude them. On the one 

hand, irreal numbers are clearly distinct from one another. They are not all the same number. 

Each is represented uniquely by a different infinite sequence of digits. 

On the other hand, they don't really have a “size.” Any one of them can encompass any other, or 

all the others. Finite differences between them can't affect their relative size in this sense, since 

any finite number divided by infinity converges to zero.  

Paradoxically, however, they can be compared to one another in a way that suggests ordinality. 

Consider this one, for example, expressed in decimal digits: 

∑ 10𝑛

∞

𝑛=1

=  … 11111111110 

Although this infinite sum doesn’t converge on any value we’re used to talking about, you can 

see that we can still add 1 to it several times to produce a sequence in the same way we do 

when generating other sequences of natural numbers: 

...11111111110 

...11111111111 

...11111111112 

...11111111113 
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In fact, irreal numbers can be understood as an ordered continuation and completion of the 

natural numbers. If we include irreals in the generation of rational numbers, the distinction 

between rationals and reals goes away. 

Now consider a second irreal, defined by multiplying the first one by three: 

∑(3 × 10𝑛) = . . .33333333330

∞

𝑛=1

 

This irreal appears to be greater than the other one (>  . . .11111111110 ), even if it doesn't differ 

in "size". For any finite value of n, the second sum is clearly larger than the first. Also, if you 

subtract   . . .11111111110  from . . .33333333330, you get: 

∑(2 × 10𝑛) =  … 22222222220

∞

𝑛=1

 

At the same time, finite ordinality doesn't apply to these numbers, because infinity's 

indeterminate nature intrudes. If a finite limit of n in the first sum were to exceed a finite limit of 

n in the second, even by 1, the first number would be greater than the second. If infinity is the 

limit of n in both cases, we can't say that their limits are equal, because infinity encompasses 

every number that's bigger than you can specify. 

Because we have to acknowledge that infinity is not a single determinate value, the size of irreal 

numbers is also indeterminate, even if they seem to have some ordinality. To repeat: their size is 

simply limitless. 

Ghost numbers 

We can only access irreal numbers whose infinite sequence of digits we have some way of 

defining. There are infinitely many that must exist, but except where there’s a pattern or 

algorithm that precisely defines them, we can never know what they are. This, of course, is also 

true for real numbers. As Gregory Chaitin has pointed out, infinitely many of the real numbers in 

any finite interval on the number line can only be expressed as an arbitrary infinite sequence of 

digits that no formula or algorithm can define. Such numbers (and the points on the line that 

they represent) are completely inaccessible to us. We know they must be there, but it’s absolutely 

impossible to identify one. I call them ghost numbers. 

Ghost numbers make up the infinite set of real and irreal numbers that can only be defined by 

indeterminable infinite sequences of digits, and they constitute a permanent hole in our ability 

to know. They aren’t constrained as to the distribution or mean value of their digits, so the law 

of large numbers does not apply. Some of them can be partially compressible, as long as an 

infinite part of their expression is indeterminable. For example, the decimal expression of a 

ghost fraction might start with 0.5, followed by ten billion zeros, followed by an indeterminable 

infinite sequence of digits. The number is still a ghost number, with an unknowable value that 

happens to be quite close to one half. 
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Real intervals 

Real (and irreal) numbers define the real number line, which is one-dimensional and has unit 

length as its measure. For any two real numbers a and b where a is less than b, the interval on 

the real number line from a to b has these characteristics: 

• The interval contains an infinite number of points, no matter how close a is to b. 

• It is complete in that it includes every real number greater than a and less than b. 

• The length of the interval is equal to (b – a). 

If you make the interval incomplete by removing even the smallest line segment from it, then 

the combined lengths of the two intervals that remain won’t add up to (b – a) any more. 

Suppose you remove a single point, with zero length, from the interval, does that still leave an 

overall length equal to (b – a)? Well, yes, but as I've already pointed out, you can't really exclude 

any single point, because its neighbors converge on it infinitely. This is a problem that Cantor 

tried to get around by letting the infinite set of finite natural numbers be defined without 

including infinite numbers. 

What you can do, though, is to remove an infinite number of line segments in such a way as to 

extract their bounding points, as the next section describes. 

The Triadic Cantor set 

Cantor was intrigued by what is now generally called the triadic Cantor set, first described by 

Henry John Stephen Smith, an Irish mathematician. 

It's good to use base-3 numbers to describe it, for reasons that will become clear. It’s composed 

of points on the real number line in the unit interval between 0 and 1. 

Specifically, it’s the set of points defined by this process: 

1. Remove the middle third of the interval between 0 and 1, which is the segment from 0.1 up 

to 0.2 in base 3 numbering,. 

2. Remove the middle third of the remaining two segments (from 0.01 up to 0.02 and from 

0.21 up to 0.22 in base-3 numbering). 

Here's what the results of these 2 steps look like: 
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If you continue to repeat this process of removing the middle third of remaining segments 

infinitely, the triadic Cantor set is what's left when you're done. 

Expressing the segments in base-3 lets you define what we’re doing declaratively: we're taking 

away every single point along the interval whose base-3 representation contains the digit 1 

anywhere in it. These points define an infinite number of line segments. 

We can add up the total length, L, of those segments, like this: 

𝐿 =
1

3
+

2

9
+

4

27
+

8

81
+ ⋯  

The same thing can be expressed like this: 

𝐿 = ∑
2𝑛

3𝑛+1

∞

𝑛=0

 

If you multiply both sides of these expression by two thirds, you get: 

2

3
𝐿 =

2

9
+

4

27
+

8

81
+ ⋯    or        

2

3
𝐿 = ∑

2𝑛

3𝑛+1
∞
𝑛=1  

You can see now that two thirds of L is the same infinite sequence of lengths that follows 1/3 in 

the first equation. If you subtract two thirds of L from both sides of these equations, you get: 

1

3
𝐿 =

1

3
       or:     𝐿 = 1. 

So, the combined lengths of all the segments we've removed add up to the entire length of the 

interval, namely 1. 

What's left? After taking away every number between 0 and 1 whose expression in base 3 

contains a 1 anywhere in it, we're left with every number between 0 and 1 that can be expressed 

in base 3 using only 2s and 0s. This is the triadic Cantor set. However, if you were to replace the 

2s with 1s in every number in the set, you’d have a complete binary (base-2) expression of every 

point in the interval we started with. We can map the triadic Cantor set to the entire infinite set 

of natural numbers expressed in binary notation like this: 

       1    0.2 
      10    0.02 
      11    0.22 
     100    0.002 
     101    0.202 
     111    0.222 
    1000    0.0002 
     ...      ... 
...11111    0.22222... 

And of course, being infinite, the set also contains an infinite number of ghost numbers. 

The triadic Cantor set is interesting because even though you can find points in it that are 

arbitrarily close together, it contains no intervals: its points are completely disconnected. 
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Between any two of them, no matter how close together they are, lie an infinite number of 

points that don't belong to the set. 

It's also useful to consider that although the process of removing middle thirds of intervals 

appears to remove all points from the line except the Cantor set, it also appears to remove the 

entire line. This seems contradictory until you realize that the Cantor set consists entirely of the 

bounding points of the segments you remove, and as I argued above, you can't properly 

exclude bounding points from an interval. They're actually still there. 

Totally random 

Okay, let's try something different: pick a random number in the range zero to fifteen. 

What am I asking? It's not like requesting a prime number, because numbers don't have an 

inherent quality of randomness. Randomness comes into play only in how you choose them. It's 

the choosing process that's random. 

The best way of defining the randomness of a process is that you can't predict its outcome 

based on any available information. Note that it's a practical, heuristic definition, not a deductive 

one. 

A good coin flip does satisfy that definition. It generates a number between zero and one that 

you can't predict based on information available to you (unless you happen to be psychic). 

Using it four times, you can generate a binary representation of the random number between 

zero and fifteen I was requesting— and there's no information available that lets you predict 

what it will be in advance. 

The next question is, if you generate a sequence of numbers using a random process like a coin 

flip, does the sequence itself have any intrinsic property of randomness? 

The randomness of the generating process makes knowing part of the sequence no help in 

predicting any of its other elements. The trouble is, that's not an intrinsic characteristic that you 

can test. The best you can say is that you don't see a pattern in the sequence, but there might 

be a pattern you missed. Or, you might see a very clear pattern that was generated by chance, 

with no actual predictive power.  

That fuzzy empirical definition of a sequence's randomness has been refined over time to be 

more rigorous (but still empirical) by restating it in terms of the complexity or information 

density of the sequence. It still comes down to an empirical definition that says a sequence is 

random to the extent it's incompressible— meaning that you can't find any way to define it 

more concisely than by listing out its elements (but there might be a way you've missed). 

Still, it's the most useful definition we have for randomness in a sequence. It also allows 

sequences to be partially random. For example, in a sequence of groups of ten numbers, the first 

nine elements in each group might always be the same while the tenth was generated by a 

random process. The sequence is then obviously compressible, and many of its elements are 

completely predictable, but part of it is likely hard to compress. A real-world example of partial 

randomness would be Brownian motion, where a particle jiggles around in a random walk— you 
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can never predict exactly what its next location will be, but each new location depends heavily 

on where the particle was before. 

A fundamental problem here is that a random process like a coin flip is perfectly capable, totally 

by chance, of generating a finite sequence having an easily discernable pattern.  

Infinitely lucky 

The stability of our world rests on probability distributions, right down to the quantum level. 

Entropy evens everything out, keeping the air pressure in a room pretty uniform. We rely on 

things mostly turning out the way they're likely to. Except, of course, the great universal river of 

entropy has back-eddies like life, like human civilization. 

The thing is, when it comes to very large systems and/or very long time-spans, the likeliness of 

unlikely events increases. A popular example is the idea that an army of monkeys might produce 

the works of Shakespeare, given enough time spent pecking randomly at typewriters. A less 

popular but no less bizarre example is the Boltzmann-brain thought experiment, suggested in 

1896 by physicist Ludwig Boltzmann. He argued that it's as likely for a brain to form 

spontaneously out of random atoms, purely by chance, as it is for the universe to be organized 

the way we think it is. Yes, the formation of such a brain is extraordinarily unlikely, but it's 

theoretically possible. 

Take that to the limit and the contradictory nature of infinity can make anything that's possible 

certain, not to mention what's downright impossible. 

Take a simple example: let's imagine using a random process like coin flipping to generate a 

sequence of zeros and ones. Probability predicts that the resulting sequence is more and more 

likely to have the same number of zeros as ones the longer we keep going. It's true that in the 

first ten flips we could get seven zeros and three ones, but over ten thousand flips we're very 

likely indeed to get about five thousand zeros and five thousand ones. 

Keep in mind, though, that although chance favors that uniform distribution over time, it doesn't 

guarantee it. The odds of getting seven zeros in a row, for example, is one in 27, or one in 128. 

Flipping a coin ten times provides three opportunities to get seven zeros in a row (the first three 

flips), so the odds become three in 128. Flipping 131 times gives you even odds, and flipping 

259 times gives you two to one odds in favor of getting those seven zeros in a row. 

Now let's imagine that we can run this process an infinite number of times, generating an 

infinite sequence of zeros and ones. Mathematicians imagine this kind of thing all the time. As 

the mathematician Vladimir Arnold is said to have observed, math is just like physics, except the 

experiments are so much cheaper. 

The odds of getting 30 zeros in a row are one in 230, or about one in a billion. The odds of 

getting a thousand zeros in a row are one in 21000, which is so unlikely as to be practically 

impossible. However, when you run the coin-flipping process an infinite number of times, those 

odds become 
∞

21000, which means that you're absolutely certain to generate that extraordinarily 
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unlikely sub-sequence in your infinite series of coin tosses. In fact, you'll get it not once, but an 

infinite number of times. 

In fact, somewhere in your infinite sequence, any finite pattern of ones and zeros that is possible 

must exist. For example, say you interpret sub-sequences of 16 binary digits as Unicode 

alphabetic characters. Then, somewhere in your infinite sequence you'll be certain to find every 

single sequence of words that humans have ever written or ever will write, in every language 

that the Unicode glyphs can represent. You'd also find all the brilliant novels that will never be 

written, and scientific papers explaining all the greatest mysteries of the universe. And, of 

course, you'd find infinite quantities of utter garbage and meaningless gobbledygook. None of 

it would be accessible in practice, but the thought experiment once again suggests the power of 

infinity to subvert what we feel is reasonable.  

Although any finite sub-sequence is bound to show up in your infinite sequence, the odds that  

your entire infinite sequence will consist only of zeros is 
1

2∞ , or zero—  it's just not possible. 

But wait, we've only run our imaginary infinite coin-flip process once, generating a single infinite 

sequence. Let's go two-dimensional, and run the infinite process an infinite number of times. 

Now the odds of generating an infinite sequence of zeros totally by chance becomes ∞/2∞, 

which no longer looks like zero, but is also not calculable. Or is it 1? 

Well, so what? 

Like it or not, infinity is deeply embedded in our concept of number. We can't get rid of it even 

if we want to. What we can do is fully acknowledge how self-contradictory it is, and how deeply 

it disrupts our ability to reason. 

In physics, we're pretty comfortable intuitively with how things work at a local level. Only when 

we look at a much larger or smaller scale do things look different than sensible people expect 

them too (I've been told that despite all appearances the earth isn't flat). 

The same may be true of mathematics, which would confirm a remark attributed to John von 

Neumann: we don't actually understand things, we just get used to them. 
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